Articles
1/3/2022
10 minutes

Automation Tools for QA: The Future of Automated Testing Systems

Written by
Team Copado
Table of contents

Over the last few decades, software has become an increasingly important part of everyday life. People depend on it for connecting with friends, managing finances, and advancing their careers. Although simple on the surface, these daily interactions are complex and many have begun to incorporate machine learning and artificial intelligence (AI). 

 

These implementations make system behavior challenging to test and validate. Automated testing revolutionized the software development life cycle (SDLC). However, quality assurance (QA) processes remain largely stagnant. This article will examine the steps it will take to make hands-off automation tools for QA a reality.

Why are automation tools for QA necessary?

Optimization efforts often overlook QA, yet it’s one of the biggest bottlenecks in the testing process. Test managers and developers alike prioritize speed in the deployment cycle. Testing tools have evolved to meet these demands, but feedback can still pose a problem. 

 

Completely testing a system under development could take days or weeks. Compared to the rest of the automated testing process, QA is a snail. This issue is present in all larger software projects where the corpus of tests grows so enormous that runtimes are prohibitive. 

Advancing Towards QA Automation

Recent exponential growth in optimization solutions has made quality improvement more accessible than ever. It’s important to note that validating quality doesn’t begin with QA; it’s embedded in the entire SDLC. Your company has likely already made some of the necessary strides towards hands-off automation tools for QA. To understand their applications, let’s break them down into four phases.

Phase I: The CI/CD Pipeline

CI/CD effectively weaves testing into each phase of the SDLC. Identifying bugs earlier in the SDLC is vital to preserving QA’s resources. Correcting defects before they make it to QA is a step in the right direction. Unfortunately, faster bug detection alone doesn’t reach the root of the issue. QA departments often lack resources and testing processes can be exclusionary. 

 

To make the most of your CI/CD implementation, data from all parts of the SDLC must integrate into the QA pipeline. Static analysis can be used to verify code quality and then to compare it against your KPIs. Eventually, the goal should be to create a codebase that you can use to standardize deployment. This standardization would dramatically alleviate the weight of decision-making in QA. 

Phase II: Cloud-Native Architecture

One roadblock to automation in QA is that physical test setups must be optimized to guarantee a balance between instant feedback and validation confidence. Cloud resources can partially mitigate this problem by allowing tests to be run in an infinitely parallel manner. Nevertheless, 100% validation continues to be a hurdle in the relay race towards QA automation. 

Phase III: Automated Testing

The growing number of automation tools for QA has made automated testing more feasible. In the case of Copado Robotic Testing, test logs are linked to Git changes through Robot Framework. Access to the statistical analysis of test run history inherently facilitates improvements. Historical log data also creates an excellent background to determine the minimum amount of tests needed for statistically sound results. 

 

In this phase, automated integration and deployment don’t exist. The release process likely still requires manual testing to verify the actual release. Release decisions remain in human control because testing data is contained within the test cases. In other words, all the data about system quality is collected in the development process, not the production environment. Automated testing focuses on the technical quality of software rather than its functional or business value. Human intervention is still required to make deployment decisions.

Phase IV: DevOps

This phase requires a high-functioning DevOps implementation. Most modern businesses already have a DevOps strategy in place. But how can it propel your business towards automation tools for QA? The key difference here is that testing optimization needs to shift focus towards software usage in production. The role of automated testing is currently disconnected from the realm of business hypotheses. To connect these two realms, you’ll need a clear understanding of how business goals correspond with software development goals. 

 

Measuring the impact of releases on the quality of the product is already within reach. Applications like Google Analytics can analyze pertinent data like usage logs and billing information. All this valuable data should be aggregated into a metric your company can use to measure the release’s performance relative to business goals. 

The Elements that Hold Us Back from Fully Automated QA

Each of the phases above promises to work toward more intelligent automation. But before automation tools for QA are possible, you must address each of these elements:

 

  • Validation of business goals. The shift of validation from technical quality to business goals should be held close to the heart of QA. Translating functionality to value should be a primary DevOps objective. 
  • Data integration beyond the testing process. Throughout each phase, data should be collected and linked to deployment. Incorporating analytics into production is integral to automating validation. 
  • Early inclusion of QA. The separation of the testing process from QA can contribute to lengthy validation periods. The collection of data for QA should begin as early in the pipeline as possible.

 

Automation tools for QA will support decision-making through meaningful data interpretation. The primary goal is to make insight actionable. Reducing the number of choices we must make while simultaneously strengthening the basis for those choices reduces decision fatigue and streamlines the SDLC for all.    

 

 

Book a demo

About The Author

#1 DevOps Platform for Salesforce

We build unstoppable teams by equipping DevOps professionals with the platform, tools and training they need to make release days obsolete. Work smarter, not longer.

Copado AI Platform: A New Era of Salesforce DevOps
Copado Expands Its Operations in Japan with SunBridge Partners
Chapter 6: Test Case Design
Making DevOps Easier and Faster with AI
Chapter 5: Automated Testing
Reimagining Salesforce Development with Copado's AI-Powered Platform
Planning User Acceptance Testing (UAT): Tips and Tricks for a Smooth and Enjoyable UAT
What is DevOps for Business Applications
Testing End-to-End Salesforce Flows: Web and Mobile Applications
Copado Integrates Powerful AI Solutions into Its Community as It Surpasses the 100,000 Member Milestone
How to get non-technical users onboard with Salesforce UAT testing
DevOps Excellence within Salesforce Ecosystem
Best Practices for AI in Salesforce Testing
6 testing metrics that’ll speed up your Salesforce release velocity (and how to track them)
Chapter 4: Manual Testing Overview
AI Driven Testing for Salesforce
Chapter 3: Testing Fun-damentals
AI-powered Planning for Salesforce Development
Salesforce Deployment: Avoid Common Pitfalls with AI-Powered Release Management
Exploring DevOps for Different Types of Salesforce Clouds
Copado Launches Suite of AI Agents to Transform Business Application Delivery
What’s Special About Testing Salesforce? - Chapter 2
Why Test Salesforce? - Chapter 1
Continuous Integration for Salesforce Development
Comparing Top AI Testing Tools for Salesforce
Avoid Deployment Conflicts with Copado’s Selective Commit Feature: A New Way to Handle Overlapping Changes
Enhancing Salesforce Security with AppOmni and Copado Integration: Insights, Uses and Best Practices
From Learner to Leader: Journey to Copado Champion of the Year
The Future of Salesforce DevOps: Leveraging AI for Efficient Conflict Management
A Guide to Using AI for Salesforce Development Issues
How to Sync Salesforce Environments with Back Promotions
Copado and Wipro Team Up to Transform Salesforce DevOps
DevOps Needs for Operations in China: Salesforce on Alibaba Cloud
What is Salesforce Deployment Automation? How to Use Salesforce Automation Tools
Maximizing Copado's Cooperation with Essential Salesforce Instruments
From Chaos to Clarity: Managing Salesforce Environment Merges and Consolidations
Future Trends in Salesforce DevOps: What Architects Need to Know
Enhancing Customer Service with CopadoGPT Technology
What is Efficient Low Code Deployment?
Copado Launches Test Copilot to Deliver AI-powered Rapid Test Creation
Cloud-Native Testing Automation: A Comprehensive Guide
A Guide to Effective Change Management in Salesforce for DevOps Teams
Building a Scalable Governance Framework for Sustainable Value
Copado Launches Copado Explorer to Simplify and Streamline Testing on Salesforce
Exploring Top Cloud Automation Testing Tools
Master Salesforce DevOps with Copado Robotic Testing
Exploratory Testing vs. Automated Testing: Finding the Right Balance
A Guide to Salesforce Source Control
A Guide to DevOps Branching Strategies
Family Time vs. Mobile App Release Days: Can Test Automation Help Us Have Both?
How to Resolve Salesforce Merge Conflicts: A Guide
Copado Expands Beta Access to CopadoGPT for All Customers, Revolutionizing SaaS DevOps with AI
Is Mobile Test Automation Unnecessarily Hard? A Guide to Simplify Mobile Test Automation
From Silos to Streamlined Development: Tarun’s Tale of DevOps Success
Simplified Scaling: 10 Ways to Grow Your Salesforce Development Practice
What is Salesforce Incident Management?
What Is Automated Salesforce Testing? Choosing the Right Automation Tool for Salesforce
Copado Appoints Seasoned Sales Executive Bob Grewal to Chief Revenue Officer
Business Benefits of DevOps: A Guide
Copado Brings Generative AI to Its DevOps Platform to Improve Software Development for Enterprise SaaS
Copado Celebrates 10 Years of DevOps for Enterprise SaaS Solutions
Celebrating 10 Years of Copado: A Decade of DevOps Evolution and Growth
5 Reasons Why Copado = Less Divorces for Developers
What is DevOps? Build a Successful DevOps Ecosystem with Copado’s Best Practices
Scaling App Development While Meeting Security Standards
5 Data Deploy Features You Don’t Want to Miss
How to Elevate Customer Experiences with Automated Testing
Top 5 Reasons I Choose Copado for Salesforce Development
Getting Started With Value Stream Maps
Copado and nCino Partner to Provide Proven DevOps Tools for Financial Institutions
Unlocking Success with Copado: Mission-Critical Tools for Developers
How Automated Testing Enables DevOps Efficiency
How to Switch from Manual to Automated Testing with Robotic Testing
How to Keep Salesforce Sandboxes in Sync
How Does Copado Solve Release Readiness Roadblocks?
Software Bugs: The Three Causes of Programming Errors
Best Practices to Prevent Merge Conflicts with Copado 1 Platform
Why I Choose Copado Robotic Testing for my Test Automation
How to schedule a Function and Job Template in DevOps: A Step-by-Step Guide
Delivering Quality nCino Experiences with Automated Deployments and Testing
Maximize Your Code Quality, Security and performance with Copado Salesforce Code Analyzer
Best Practices Matter for Accelerated Salesforce Release Management
Upgrade Your Test Automation Game: The Benefits of Switching from Selenium to a More Advanced Platform
Three Takeaways From Copa Community Day
What Is Multi Cloud: Key Use Cases and Benefits for Enterprise Settings
How To Develop A Salesforce Testing Strategy For Your Enterprise
Using Salesforce nCino Architecture for Best Testing Results
Cloud Native Applications: 5 Characteristics to Look for in the Right Tools
5 Steps to Building a Salesforce Center of Excellence for Government Agencies
Salesforce UI testing: Benefits to Staying on Top of Updates
Benefits of UI Test Automation and Why You Should Care
Copado + DataColada: Enabling CI/CD for Developers Across APAC
Types of Salesforce Testing and When To Use Them
What is Salesforce API Testing and It Why Should Be Automated
Machine Learning Models: Adapting Data Patterns With Copado For AI Test Automation
Automated Testing Benefits: The Case For As Little Manual Testing As Possible
Beyond Selenium: Low Code Testing To Maximize Speed and Quality
UI Testing Best Practices: From Implementation to Automation
How Agile Test Automation Helps You Develop Better and Faster
Salesforce Test Cases: Knowing When to Test
Go back to resources
There is no previous posts
Go back to resources
There is no next posts

Explore more about

No items found.
Articles
January 14, 2025
Copado AI Platform: A New Era of Salesforce DevOps
Articles
January 10, 2025
Copado Expands Its Operations in Japan with SunBridge Partners
Articles
January 2, 2025
Chapter 6: Test Case Design
Articles
December 6, 2024
Making DevOps Easier and Faster with AI

Activate AI — Accelerate DevOps

Release Faster, Eliminate Risk, and Enjoy Your Work.
Try Copado Devops.

Resources

Level up your Salesforce DevOps skills with our resource library.

Upcoming Events & Webinars

Learn More

E-Books and Whitepapers

Learn More

Support and Documentation

Learn More

Demo Library

Learn More