Articles
1/6/2022
10 minutes

Building Scalable Robot Framework Test Automation: Benefits and Challenges

Written by
Team Copado
Table of contents

Internal testers can bring a unique perspective to the transition to test automation. Situated between the development and operational teams, the role has the opportunity to witness business requirements translated into code. The following is an inside look at one pathway toward implementing Robot Framework for test automation, both the benefits and why an organization might opt for a more comprehensive solution for easier setup and less maintenance.

Happy Path Leads to Unhappy Users

Many companies, especially young startups, lack systemic testing processes. As you can imagine, the pressure of delivering a new feature in a startup company can be immense. All independent software components—not to mention custom integrations—are expected to work harmoniously for a functional product.

Continuously running unit tests can be put in place for each of the components. Then, many companies rely on happy path test cases as the final functionality testing. The rest is often left for end customers to explore, which backfires nearly all of the time. Some may call this the shift-right approach. No matter what you call it, the repercussions are detrimental: 

  • Brand image takes a hit. The problem with happy path testing is that a significant amount of users stray from that joyous route. 
  • Bugs are pervasive. The swarm forces developers to spend far too much time on avoidable patches rather than developing new features.
  • You are burning through resources. The business model costs are unsustainable. 

Introducing Exploratory Manual Testing

One way to improve testing is to assign the exploratory testing of new features and the constantly expanding regression set to a dedicated manual tester rather than have developers do the testing. There’s some truth to the cliche that developers and testers have totally different brains. Why? Because one finds joy in creating something new and the other in breaking it. Accordingly, developers often make terrible testers and vice versa.

Breaking News: Manual Regression Testing Can’t Work at Scale

With manual regression testing, you can find and fix more bugs before production. Developers can turn their attention away from patches and toward new features. Of course, this leads to a far superior user experience. Unfortunately, it can only take a few months for the manual tester to become the most significant bottleneck between development and deployment.

It can take weeks to run through an entire testing cycle. With bug fixes, the cycle gets put on repeat. For example, imagine a lone tester running through 250 end-to-end test cases to be performed on four different browsers and 25 end-to-end test cases to be performed on the physical product’s user interface (UI.) 

With such an unsustainable workload, testers begin to experience fatigue. This leads to them making assumptions and becoming blind to regression bugs. Worse, they often can’t finish their testing, period.

The Shift Towards Automation

The obvious next step is automation. Many companies go through an initial phase of test automation skepticism. For example, testers may fear becoming redundant. However, a manual testing process is simply not sustainable at scale.

So, you have to sit down to ask the important questions. Where do we start? Who is going to do it? Which framework should we use, and how can we measure its success?

Criteria for Selecting Test Automation Tools

Choosing a framework is an interesting challenge, especially since those using the framework are usually not developers. Here are a few characteristics to prioritize while searching for a testing framework:

  • Readability. Test case readability is crucial. The more self-explanatory the test case, the more people can review it. This way, the business owner can review test cases if necessary (think low-code).
  • Support for appending functionalities. Look for a framework that can do this to respond to fluctuating needs. 
  • Fit with your budget and needs. Open-source tools are often free, but commercial testing tools offer functionalities that go beyond their open-source siblings, especially for low-coders and cloud-native architecture.

Testing solutions that incorporate the Robot Framework test automation ecosystem provide both flexibility and readability.

Let’s look at the benefits and challenges of implementing Robot Framework alone and see when you might want to consider a more comprehensive option.

Step One: Implementing Robot Framework Test Automation

One downside to Robot Framework is setup. Many companies find they’re in for a rocky start. Unlike cloud-based testing software, it can take a couple of weeks to get Robot Framework up and running on a local machine. For a non-developer, heavy installation work is required to sort out the browser version, driver version, and so on.

However, once you have Robot Framework up and running, you need to define a test automation strategy. For many testers, two key concerns are

  1. How do we accomplish library development for non-supported functionalities?
  2. How can we conduct manual testing in parallel?

Step Two: Strategizing Test Automation 

Some easy test cases to start automating are web application tests that run against different browsers because. These often have the most regression tests, many of which involve similar, repetitive steps. For example, you can automate a test involving application availability to different user groups. When deciding between automating an end-to-end process or an application login process, the latter is a much easier choice.

A test automation solution built on Robot Framework has the ability to append its functionality with additional libraries. Establishing a proper development process is essential to implementing a library that addresses all your functionality needs. The tester can own the library, but the code itself could be peer-reviewed by a seasoned developer.

The Journey to 80% Test Automation

One thing to keep in mind is that automating everything immediately isn’t feasible. In the beginning, you can continue to test manually whatever isn’t automated. Once the present regression set is automated, test new functionalities manually for exploratory purposes. Then append them to the automated regression asset. 

For example, if you run into availability issues with our web application, schedule availability test cases during production. Your team can receive a heads up to their email, Slack, and common monitor when they fail. With this responsiveness, you can stay nearly a step ahead of your users.

6 Months into Test Automation

After six months, you can successfully automate 80% of your regression test cases. As a result, your DevOps maturity will grow exponentially. You can continuously build, integrate, and test with your automated test assets. Then deploy in a production-like environment. 

Manual tests can be reserved for major releases and distribution. With automation, testing takes several hours, rather than several weeks. This allows everyone to focus on new features, exploratory testing methods, and maintaining assets.

The Downside of an Open-source Scalable Solution

When the trade-off is monumental release cycle acceleration, no price seems too high. But a wise man once said that progress makes your problems evolve, not disappear. The biggest setback with Robot Framework test automation is maintenance. Maintenance duties can weigh a testing team down and make it impossible to manage scalability. This issue isn’t exclusive to Robot Framework. Upkeep is one of the most common problems among test automation experts.

How to Secure the Scalability of Test Automation

To reap all the benefits of automation without incurring the wrath of continuous maintenance, invest heavily in expertise from the jump. There are services made to accompany open-source software like Robot Framework, and for good reason. Comprehensive test automation solutions like Copado Robotic Testing (CRT) use cloud architecture and AI to solve many of the maintenance challenges you are bound to face. With a cloud-based solution, you can test from anywhere, and in any browser. AI massively cuts down on maintenance workload by self-healing broken tests. CRT’s machine learning can also predict the quality of future releases. Copado Robotic Testing has all the flexibility of Robot Framework in an easy-to-use, cloud-based package.

 

 

Book a demo

About The Author

#1 DevOps Platform for Salesforce

We build unstoppable teams by equipping DevOps professionals with the platform, tools and training they need to make release days obsolete. Work smarter, not longer.

ビジネスアプリケーション向けのDevOps(デブオプス)って何?
セールスフォースエコシステムにおけるDevOpsの卓越性
セールスフォーステストにおけるAI活用のベストプラクティス
6 testing metrics that’ll speed up your Salesforce release velocity (and how to track them)
第4章: 手動テストの概要
セールスフォース向けAI動作テスト
Chapter 3: Testing Fun-damentals
Salesforce Deployment: Avoid Common Pitfalls with AI-Powered Release Management
Exploring DevOps for Different Types of Salesforce Clouds
Copado Launches Suite of AI Agents to Transform Business Application Delivery
What’s Special About Testing Salesforce? - Chapter 2
Why Test Salesforce? - Chapter 1
Continuous Integration for Salesforce Development
Comparing Top AI Testing Tools for Salesforce
Avoid Deployment Conflicts with Copado’s Selective Commit Feature: A New Way to Handle Overlapping Changes
From Learner to Leader: Journey to Copado Champion of the Year
Enhancing Salesforce Security with AppOmni and Copado Integration: Insights, Uses and Best Practices
The Future of Salesforce DevOps: Leveraging AI for Efficient Conflict Management
A Guide to Using AI for Salesforce Development Issues
How to Sync Salesforce Environments with Back Promotions
Copado and Wipro Team Up to Transform Salesforce DevOps
DevOps Needs for Operations in China: Salesforce on Alibaba Cloud
What is Salesforce Deployment Automation? How to Use Salesforce Automation Tools
Maximizing Copado's Cooperation with Essential Salesforce Instruments
Future Trends in Salesforce DevOps: What Architects Need to Know
From Chaos to Clarity: Managing Salesforce Environment Merges and Consolidations
Enhancing Customer Service with CopadoGPT Technology
What is Efficient Low Code Deployment?
Copado Launches Test Copilot to Deliver AI-powered Rapid Test Creation
Cloud-Native Testing Automation: A Comprehensive Guide
A Guide to Effective Change Management in Salesforce for DevOps Teams
Building a Scalable Governance Framework for Sustainable Value
Copado Launches Copado Explorer to Simplify and Streamline Testing on Salesforce
Exploring Top Cloud Automation Testing Tools
Master Salesforce DevOps with Copado Robotic Testing
Exploratory Testing vs. Automated Testing: Finding the Right Balance
A Guide to Salesforce Source Control
A Guide to DevOps Branching Strategies
Family Time vs. Mobile App Release Days: Can Test Automation Help Us Have Both?
How to Resolve Salesforce Merge Conflicts: A Guide
Copado Expands Beta Access to CopadoGPT for All Customers, Revolutionizing SaaS DevOps with AI
Is Mobile Test Automation Unnecessarily Hard? A Guide to Simplify Mobile Test Automation
From Silos to Streamlined Development: Tarun’s Tale of DevOps Success
Simplified Scaling: 10 Ways to Grow Your Salesforce Development Practice
What is Salesforce Incident Management?
What Is Automated Salesforce Testing? Choosing the Right Automation Tool for Salesforce
Copado Appoints Seasoned Sales Executive Bob Grewal to Chief Revenue Officer
Business Benefits of DevOps: A Guide
Copado Brings Generative AI to Its DevOps Platform to Improve Software Development for Enterprise SaaS
Celebrating 10 Years of Copado: A Decade of DevOps Evolution and Growth
Copado Celebrates 10 Years of DevOps for Enterprise SaaS Solutions
5 Reasons Why Copado = Less Divorces for Developers
What is DevOps? Build a Successful DevOps Ecosystem with Copado’s Best Practices
Scaling App Development While Meeting Security Standards
5 Data Deploy Features You Don’t Want to Miss
Top 5 Reasons I Choose Copado for Salesforce Development
How to Elevate Customer Experiences with Automated Testing
Getting Started With Value Stream Maps
Copado and nCino Partner to Provide Proven DevOps Tools for Financial Institutions
Unlocking Success with Copado: Mission-Critical Tools for Developers
How Automated Testing Enables DevOps Efficiency
How to Keep Salesforce Sandboxes in Sync
How to Switch from Manual to Automated Testing with Robotic Testing
Best Practices to Prevent Merge Conflicts with Copado 1 Platform
Software Bugs: The Three Causes of Programming Errors
How Does Copado Solve Release Readiness Roadblocks?
Why I Choose Copado Robotic Testing for my Test Automation
How to schedule a Function and Job Template in DevOps: A Step-by-Step Guide
Delivering Quality nCino Experiences with Automated Deployments and Testing
Best Practices Matter for Accelerated Salesforce Release Management
Maximize Your Code Quality, Security and performance with Copado Salesforce Code Analyzer
Upgrade Your Test Automation Game: The Benefits of Switching from Selenium to a More Advanced Platform
Three Takeaways From Copa Community Day
Cloud Native Applications: 5 Characteristics to Look for in the Right Tools
Using Salesforce nCino Architecture for Best Testing Results
How To Develop A Salesforce Testing Strategy For Your Enterprise
What Is Multi Cloud: Key Use Cases and Benefits for Enterprise Settings
5 Steps to Building a Salesforce Center of Excellence for Government Agencies
Salesforce UI testing: Benefits to Staying on Top of Updates
Benefits of UI Test Automation and Why You Should Care
Types of Salesforce Testing and When To Use Them
Copado + DataColada: Enabling CI/CD for Developers Across APAC
What is Salesforce API Testing and It Why Should Be Automated
Machine Learning Models: Adapting Data Patterns With Copado For AI Test Automation
Automated Testing Benefits: The Case For As Little Manual Testing As Possible
Beyond Selenium: Low Code Testing To Maximize Speed and Quality
UI Testing Best Practices: From Implementation to Automation
How Agile Test Automation Helps You Develop Better and Faster
Salesforce Test Cases: Knowing When to Test
DevOps Quality Assurance: Major Pitfalls and Challenges
11 Characteristics of Advanced Persistent Threats (APTs) That Set Them Apart
7 Key Compliance Regulations Relating to Data Storage
7 Ways Digital Transformation Consulting Revolutionizes Your Business
6 Top Cloud Security Trends
API Management Best Practices
Applying a Zero Trust Infrastructure in Kubernetes
Building a Data Pipeline Architecture Based on Best Practices Brings the Biggest Rewards
CI/CD Methodology vs. CI/CD Mentality: How to Meet Your Workflow Goals
DevOps to DevSecOps: How to Build Security into the Development Lifecycle
DevSecOps vs Agile: It’s Not Either/Or
Go back to resources
There is no previous posts
Go back to resources
There is no next posts

Explore more about

No items found.
Articles
October 31, 2024
ビジネスアプリケーション向けのDevOps(デブオプス)って何?
Articles
October 15, 2024
セールスフォースエコシステムにおけるDevOpsの卓越性
Articles
October 11, 2024
セールスフォーステストにおけるAI活用のベストプラクティス
Articles
October 4, 2024
6 testing metrics that’ll speed up your Salesforce release velocity (and how to track them)

AIを有効活用しDevOpsを加速

より速くリリースし、リスクを排除し、仕事を楽しんでください。
コパードDevOpsをお試しください。

リソース

リソースライブラリを使用して セールスフォースDevOpsのスキルをレベルアップしてください。

今後のイベントと
オンラインセミナー

さらに詳しく

電子書籍とホワイトペーパー

さらに詳しく

サポートとドキュメンテーション

さらに詳しく

デモライブラリ

さらに詳しく